SEMIINAR REPORT ON

IMA GE PROCESSING TECHNIQUES

CONTIENIS

- Introduction

Various techniques of image processing

- Geometric Transformation
- Image Smoothing
- Contrast Enhancement
- Negative Transformation
- Edge Detection
- Conclusion

INTRODUCTION

- IMAGE:-

Image is a optical appearance of object produced through mirror or lenses.

- DIGITAL IMAGE:-

Digital image is composed of finite no. of elements each of which has a particular location and intensity values.

- DIGITAL IMAGE PROCESSING:-

The field of digital image processing refers to processing of digital images by means of digital computers.

VARIOUS TECHNIQUES OF IMAGE PROCESSING

- Geometric Transformation
- Image Smoothing
- Contrast Enhancement
- Edge Detection
- Negative Transformation
- Morphological Operation

GEOMETRIC

TRANSFORMATION

GEOMIETRIC TRANSFORMATION

Geometric transformation are simply alignments done on images to collect the exact appearance of an objects.
(i) Translation
(ii)Rotation
(iii)Scaling

Translation

In translation, axes of individual are displayed by their respective displacement fáctor.

$\mathrm{XT}=\mathrm{X}+\mathrm{X} 0 \quad \mathrm{YT}=\mathrm{Y}+\mathrm{Y} 0 \quad \mathrm{ZT}=\mathrm{Z}+\mathrm{ZO}$

Input image
Translated image

Rotation

Rotation is one type of alignment where an image is rotated w.r.t different axes with different angles to align with the image plane

Input image

Output image

Scaling

In scalling operation axes of indivisuals are multiplied by respective scaling factor.

$$
X_{S}=S_{X} X \quad Y_{S}=S_{Y} Y \quad Z_{S}=S_{Z} Z
$$

Input image

Output image scaled By 0.5

IMAGE
 SMOOTHING

IMAGE SMOOTHING

It is a technique to reduce noise in a digital image. It is usually applied to diminish the spurious noise.

- Low pass filltering
- Gaussian filltering
- Median filtering

Low pass Biltering

Since noise contribute in high frequency component, so LPF is used to suppress such high frequency component to remove the noise.

General image

Cont...

Image with Gaussian noise

Output of LPF

Cont...

Image with salt and pepper noise

Output of LPF

Gaussian filtering

It is sometimes useful to apply a Gaussian smoothing filter to an image before performing edge detection. The filter can be used to soften edges, and to filter out spurious points(noise) in an image.

General image

Output of Gaussian filter

Cont...

Image with Gaussian noise

Output of Gaussian filter

Cont...

Image with salt and pepper noise

Median Filtering

This is a ordered statistic filter is defined by the equation:

$$
\begin{aligned}
\text { wi } & =1 \text { if } \mathrm{i}=(\Omega-1) / 2 \\
= & 0 \text { otherwise }
\end{aligned}
$$

Where Ω is an odd number
Median filter is very effective to remove impulsive noise.

Cont...

Image with Gaussian noise

Cont...

Image with salt and pepper noise

CONTRAST

ENHANCEMENT

CONTRAST ENHANCEMIENT

- Processing an image means to enhance certain features of the image.
- One of the defect found in images is its poor contrast due to inadequate lighting, aperture size, shutter speed etc.
- Histogram:-It gives global description of an image.
- Histogram equalization:-It means increasing dynamic range of the gray level.

Cont...

$\mathrm{p}\left(\mathrm{r}_{\mathrm{k}}\right)=\mathrm{n}_{\mathrm{k}} / \mathrm{n}$

Cont...

Output image

Histogram of output image

EDGE

DETECTION

EDGE DETECTION

- It s the most common approach to detect the discontinuity.
- Edges are the boundary between two regions having distinct gray levels.
- Ariel images,road secton,river etc. need boundary information.

Cont...

There are four operators for edge detection:-

- Prewitt operators
- Robert operators
- Canny edge detection

Prewitt Operator

- Prewitt is a method of edge detection in image processing which calculates the maximum response of a set of convolution kernels to find the local edge orientation for each pixel.

Mask of prewitt edge detector

$\mathrm{Gy}=$| -1 | -1 | -1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 1 | 1 |

$G x=$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |
| -1 | 0 | 1 |

Cont...

Robent Operator

The equivalent masks of the robert operator are

$$
\begin{aligned}
& \mathrm{d} 1=\mathrm{g} 0-\mathrm{g} 1 \text { and } \mathrm{d} 2=\mathrm{g} 0-\mathrm{g} 3 \\
& \begin{array}{|l|l|}
\hline 0 & 0 \\
\hline-1 & 1 \\
\hline
\end{array} \\
& \hline \begin{array}{|l|l|}
\hline 0 & -1 \\
\hline 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

INPUT IMAGE

OUTPUT IMAGE

Canny Operator

- Canny operator is used for wide range of edge detection.
- It smooth the image by Gaussian fillter to reduce noise, unwanted detail and texture.
- Canny then compute gradient using gradient operators

Cont...

Input image

Output image

NEGATIVE
TRANSFORMATION

NEGATIVE TRANHORMATION

- Negative transformation means reversing the intensity levels of an image.
- This type of processing is used for enhancing white or gray detail embedded in dark region of an image.
- Mostly used in medical application where minute informations are important.

Conto.

$S=L-1-r$
S:-Negative of an image
L:-total no.of pixels
R:-max intensity value

Input image

Cont...

CONCLUSION

The seminar "Image processing technique" has been successfully finished.
we perform various operation:-

- Transformation of image
- Smoothing of image
- Contrast enhancement
- Negative transformation
- Edge detection

Now a days image processing have great application. These techniques are used in military purpose ,for identifying certain regions ,hills ,rivers. Image processing have many applications in medical purposes, specially the image negative for identifying small defects in the body.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

PPT PRESENTATION ON DIGITAL IMAGEPROCESSINGCHAPTER 1
DIGITAL IMAGE FUNDAMENTALS

By,
Dr. NAVEEN B
Associate Professor
Department Of ECE BGSIT, BG NAGARA

1. Introduction

- In many image processing applications, the objective is to help a human observer perceive the visual information in an image. Therefore, it is important to understand the human visual system.
- The human visual system consists mainly of the eye (image sensor or camera), optic nerve (transmission path), and brain (image information processing unit or computer).
- It is one of the most sophisticated image processing and analysis systems.

1.1. Structure of Human Eye

The lens and the ciliary muscle focus the reflected lights from objects into the retina to form an image of the objects.

1.1. Retinal Photoreceptors

- Two types of photoreceptors: rods and cones (light sensors).
- Cones: 6-7 million, located in central portion of retina (fovea), responsible for photopic vision (bright-light vision) and color perception, can resolve fine details.
- Rods: 75-150 million, distributed over the entire retina, responsible for scotopic vision (dim-light vision), not color sensitive, gives general overall picture (not details).
- Fovea : Circular indentation in center of retina, about 1.5 mm diameter, dense with cones.
- Photoreceptors around fovea responsible for spatial vision (still images).
- Photoreceptors around the periphery responsible for detecting motion.
- Blind spot: Point on retina where optic nerve emerges, devoid of photoreceptors.

1.1. Retinal Photoreceptors

Cones

- There are 6 to 7 million cones in each eye.
- Concentrated in the central portion of the retina called the fovea.
- Highly sensitive to color.
- Each cone is connected to its own nerve end, so human can resolve fine details.
- Cone vision is called photopic or BRIGHT-LIGHT VISION

1.1. Retinal Photoreceptors

Rods

- There are $\mathbf{7 0}$ to $\mathbf{1 5 0}$ million cones in each eye.
- Distributed over the retina surface.
- Several rods are connected to a single nerve end.
- Rods don't discern fine details.
- Rods give a general picture of the field of view.
- Not involve in color vision and sensitive to low levels of illumination.
- Rod vision is called scotopic or DIM-LIGHT VISION.

1.1. Elements of Visual Perception.

FIGURE 2.2
Distribution of rods and cones in the retina.

-Fovea size is 1.5 mm in diameter
$\cdot 1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ square contain 337000 cones $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ CCD imaging chip

1.2. Image Foundation in the Eye

Focal length $=\mathrm{f}=17$ to 14 mm
$\frac{\mathrm{x}}{\mathrm{y}}=\frac{\mathrm{h}}{\mathrm{f}}$
$\mathrm{h}=2.55 \mathrm{~mm}$

1.2. Image Foundation in the Eye

FIGURE 2.3
Graphical
representation of the eye looking at a palm tree. Point C is the optical center of the lens.

1.3. Brightness Adaptation and Discrimination

- The range of light intensity human can adapt to is in the range of 10^{10}
- Subjective brightness is a logarithmic function of the light intensity incident on the eye.
- The visual system does not operate simultaneously over the 10^{10} range. It accomplishes this large variation by changes in its overall sensitivity, a phenomenon known as brightness adaptation.

```
Range of
subjective
brightness
sensations
showing a
particular
adaptation level.
```

$\mathbf{m L}=$ millilambert

1.3. Brightness Adaptation and Discrimination

- Brightness discrimination is the ability of the eye to discriminate between changes in light intensity at any specific adaptation level.
- The quantity $\Delta I_{d} I_{l}$, where ΔI_{c} is the increment of illumination discriminable 50% of the time with background illumination I, is called the Weber ratio. A small value of Weber ratio, means good brightness discrimination.

1.3. Brightness Adaptation and Discrimination

- Brightness discrimination is poor at low levels of illumination. The two branches in the curve indicate that at low levels of illumination vision is carried out by the rods, whereas at high level by the cones.

FIGURE 2.6
Typical Weber
ratio as a function
of intensity.

1.4. Perceived Brightness

Two phenomena clearly demonstrate that perceived brightness is not a simple function of intensity.

1.4. Perceived Brightness

a
b
FIGURE 2.7
(a) An example showing that perceived brightness is not a simple function of intensity. The relative vertical positions between the two profiles in
(b) have no special significance; they were chosen for clarity.

First Phenomena Visual system tends to undershoot or overshoot around boundary of regions of different intensities.

1.4. Perceived Brightness

a b c
FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

The second phenomena, called simultaneous contrast, a spot may appears to the eye to become darker as the background gets lighter.

1.5. Optical I//usions

Optical illusions occurs when the eye fills in non-existing information or wrongly perceives geometrical properties of objects.

1.6. Masking

Masking in psychophysics is defined as the reduction in visibility of a stimulus due to the spatial non-uniformity in its surrounding.

1.6. Masking

2. Light and the Electromagnetic Spectrum

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

The Wavelength of an Electromagnetic Wave Required to "SEE" an Object Must be of the Same Size as or Smaller Than the Object.

2. Light and the Electromagnetic Spectrum

- The colors that humans perceive in an object are determined by the nature of the light reflected from the object.
- Achromatic or monochromatic light is void of color, and is described by its intensity (gray level).
- Chromatic light spans the electromagnetic energy spectrum from 0.43 to $0.79 \mu \mathrm{~m}$, and is described by
- Radiance: Total amount of energy that flows from the light source, and measured in watts (W)
- Luminance: Measured in lumens (Im), gives a measure of the amount of energy an observer perceives from a light source
- Brightness: Subjective descriptor of light perception that is practically impossible to measure.

3. Image Sensing and Acquisition

- Electromagnetic energy source and sensor that can detect the energy of the electromagnetic source are needed to generate an image. EM source will illuminate the objects that need to be imaged and then a sensor will detect the reflected energy from the objects.
- Different objects will have different degree of reflections and absorption of the electromagnetic energy. These differences in reflections and absorption are the reasons for objects to appear distinct in the images.

3. Image Sensing and Acquisition

a
b
FIGURE 2.12
(a) Single imaging
sensor.
(b) Line sensor.
(c) Array sensor.

3.1. Image Acquisition Using a Single Sensor

FIGURE 2.13 Combining a single sensor with motion to generate a 2-D image.

3.2. Image Acquisition Using Sensor Strip

a b
FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

3.2. Image Acquisition Using Sensor Strip

- Measure the width of objects
- Where we may be imaging and inspecting a continuous web of material flowing by the camera

3.2. Image Acquisition Using Sensor Strip

3.2. Image Acquisition Using Sensor Strip

Method No. 66
Inspection On a Conveyor (1)

3.3. Image Acquisition Using Sensor Arrays

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

3.4. A Simple Image Formation Model

Mathematical representation of monochromatic images.

- Two dimensional function $f(x, y)$, where f is the gray level of a pixel at location x and y.
- The values of the function f at different locations are proportional to the energy radiated from the imaged object.
3.4. A Simple Image Formation Model
$0<f(\mathbf{x}, \mathbf{y})<\infty \quad$ Nonzero and Finite
$\begin{array}{ll}f(\mathbf{x}, \mathbf{y})=i(\mathbf{x}, \mathbf{y}) * r(\mathbf{x}, \mathbf{y}) & \text { Reflectivity } \\ f(\mathbf{x}, \mathbf{y})=i(\mathbf{x}, \mathbf{y}) * t(\mathbf{x}, \mathbf{y}) & \text { Transmissivity }\end{array}$
$0<i(x, y)<\infty$
$0 \leq r(x, y)$ and $t(x, y) \leq 1$

3.4. A Simple Image Formation Model

$i(\mathbf{x}, \mathbf{y})$

: Sun on clear day	$\mathbf{9 0 , 0 0 0} \mathrm{Im} / \mathrm{m} 2$
: Sun on cloudy day	$\mathbf{1 0 , 0 0 0 ~ I m} / \mathrm{m} 2$
: Full moon	$\mathbf{0 . 1} \mathrm{Im} / \mathrm{m2}$
: Commercial office	$\mathbf{1 , 0 0 0 ~ I m / m 2}$

$r(\mathbf{x}, \mathbf{y})$
:Black Velvet
0.01
:Stainless Steel 0.65
:Flat-white Wall Paint 0.80
:Silver-plated Metal 0.90
:Snow
0.93

4.1. Image Sampling and Quantization

- The output of most sensors is continuous in amplitude and spatial coordinates.
- Converting an analog image to a digital image require sampling and quantization
- Sampling: is digitizing the coordinate values
- Quantization: is digitizing the amplitude values

4.1. Image Sampling and Quantization

Spatial sampling is accomplished by sensor arrangement and mechanical movement.

4.1. Image Sampling and Quantization

a b
FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Charge-coupled device (CCD)

4.2. Representing Digital Images

FIGURE 2.18

Coordinate
convention used
in this book to represent digital
images.

$$
f(x, y)=\left[\begin{array}{cccc}
f(0,0) & f(0,1) & \cdots & f(0, N-1) \\
f(1,0) & f(1,1) & \cdots & f(1, N-1) \\
\vdots & \vdots & & \vdots \\
f(M-1,0) & f(M-1,1) & \cdots & f(M-1, N-1)
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{0,0} & a_{0,1} & \cdots & a_{0, N-1} \\
a_{1,0} & a_{1,1} & \cdots & a_{1, N-1} \\
\vdots & \vdots & & \vdots \\
a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1, N-1}
\end{array}\right]
$$

$$
L=2^{k}
$$

4.2. Representing Digital Images

The pixel intensity levels (gray scale levels) are in the interval of [0, L-1].

$$
0 \leq a_{i, j} \leq L-1 \quad \text { Where } \quad L=2^{k}
$$

The dynamic range of an image is the range of values spanned by the gray scale.

The number, b, of bits required to store a digitized image of size M by N is

$$
b=M \times N \times k
$$

4.2. Representing Digita

Elaine image of size 512 by 512 pixels (5 by 5 inches), The dynamic range is [0,255]. Find the following:

- The number of bits required to represent a pixel
- The size of the image in bits?

77	66	68	67	98	93	79	81
79	61	61	71	61	78	88	94
79	93	84	64	72	76	95	94
97	65	71	75	75	72	95	111
120	81	82	76	72	77	78	83
150	146	112	83	78	62	91	85
156	145	158	125	107	121	95	86
158	166	147	146	153	149	129	107

4.2. Representing Digital Images

TABLE 2.1

Number of storage bits for various values of N and k.

$\boldsymbol{N} / \boldsymbol{k}$	$\mathbf{1}(\boldsymbol{L}=\mathbf{2})$	$\mathbf{2}(\boldsymbol{L}=\mathbf{4})$	$\mathbf{3}(\boldsymbol{L}=\mathbf{8})$	$\mathbf{4}(\boldsymbol{L}=\mathbf{1 6})$	$\mathbf{5}(\boldsymbol{L}=\mathbf{3 2})$	$\mathbf{6}(\boldsymbol{L}=\mathbf{6 4})$	$\mathbf{7}(\boldsymbol{L}=\mathbf{1 2 8})$	$\mathbf{8}(\boldsymbol{L}=\mathbf{2 5 6})$
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	$1,048,576$	$1,310,720$	$1,572,864$	$1,835,008$	$2,097,152$
1024	$1,048,576$	$2,097,152$	$3,145,728$	$4,194,304$	$5,242,880$	$6,291,456$	$7,340,032$	$8,388,608$
2048	$4,194,304$	$8,388,608$	$12,582,912$	$16,777,216$	$20,971,520$	$25,165,824$	$29,369,128$	$33,554,432$
4096	$16,777,216$	$33,554,432$	$50,331,648$	$67,108,864$	$83,886,080$	$100,663,296$	$117,440,512$	$134,217,728$
8192	$67,108,864$	$134,217,728$	$201,326,592$	$268,435,456$	$335,544,320$	$402,653,184$	$469,762,048$	$536,870,912$

(Sampling Theorem and Aliasing Effect)

Shannon sampling theorem states that if a function is sampled at a rate equal to or greater than twice its highest frequency, it is possible to recover completely the original function from its samples.
» $x=$ linspace $(0,0.01)$;
» x $1=2 * \cos (2 * \mathrm{pi} * 100 * \mathrm{x})$;
» $\mathrm{x} 2=2 * \sin (2 * \mathrm{pi} * 200 * \mathrm{x})$;
» $\mathrm{x} 3=-\sin (2 * \mathrm{pi} 400 * \mathrm{x})$;
» $\mathrm{xt}=\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3$;
» plot(xt)

$x(t)=2 \cos \left(2 \pi^{*} 100 t\right)+3 \sin \left(2 \pi^{*} 200 t\right)-\sin \left(2 \pi^{*} 400 t\right)$
What is the sampling rate?

(Aliasing)

If the function is under-sampled, then ALIASING corrupts the sampled function.

6000 samples/sec

X (f)

Under-"'sampling (<6000)

(Aliasing)

(Aliasing)

Figure 2.8 Alising in samplad imagary

(Aliasing and Moire Pattern)

FIGURE 2.24 Illustration of the Moiré pattern effect.

4.3. Spatial Resolution

4.3. Spatial Resolution

1024
FIGURE 2.19 A 1024×1024, 8-bit image subsampled down to size 32×32 pixels. The number of allowable gray levels was kept at 256 .

An image of size 1024×1024 is printed on paper of size 2.75×2.75 inch. Resolution $=1021 / 2.75=372$ pixels/inch (dots per inch, dpi)

4.3. Spatial Resolution

a b c
d e f
FIGURE 2.20 (a) $1024 \times 1024,8$-bit image.(b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) $256 \times 256,128 \times 128,64 \times 64$, and 32×32 images resampled into 1024×1024 pixels.

4.3. Gray-Level Resolution

4.3. Gray-Level Resolution

4.3. Spatial and Gray-Level Resolution

a b c
FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Huang Experiment [1965] attempt to quantify experimentally the effects on image quality produced by varying N and k simultaneously.

4.3. Spatial and Gray-Level Resolution

Isopreference curves tend to become more vertical as the detail in the image increase.

As the detail in the image decrease the perceived quality remained the same in some intervals in which the spatial resolution was increased, but the number of gray levels actually decreased. A possible explanation is that a decrease in k tends to increase the apparent contrast of an image, a visual effect that human often perceive as improved quality in an image.

4.5. Zooming \& Shrinking Digital Images

- Zooming and shrinking is applied to digital images, while sampling and quantization is applied to analog images.
- Zooming requires the creation of new pixel locations, and the assignment of gray levels.

Nearest neighbor interpolation

4.5. Zooming \& Shrinking Digital Images

Bilinear interpolation (Forward Warping)

$$
\begin{align*}
& x^{\prime}=r(x, y)=2 x \\
& y^{\prime}=s(x, y)=2 y \\
& v\left(x^{\prime}, y^{\prime}\right)=a x^{\prime}+b y^{\prime}+c x^{\prime} y^{\prime}+d \\
& \mathrm{~V}(3,3)=a(3)+b(3)+c(9)+d \tag{2,4}\\
& \bigcirc-0000 \\
& \circ 000000 \\
& \circ \circ \circ \circ \circ \circ \\
& \circ \text { ○○○○○ }
\end{align*}
$$

4.5. Zooming \& Shrinking Digital Images

Bilinear interpolation (Forward Warping)

$$
\begin{align*}
& 125170129 \\
& 172170175 \\
& 125128128 \\
& v\left(x^{\prime}, y^{\prime}\right)=a x^{\prime}+b y^{\prime}+c x^{\prime} y^{\prime}+d \\
& 125=a(2)+b(2)+c(4)+d \tag{2,4}\\
& 170=a(2)+b(4)+c(8)+d \tag{3,3}\\
& 172=a(4)+b(2)+c(8)+d \\
& 170=a(4)+b(4)+c(16)+d \tag{4,4}
\end{align*}
$$

4.5. Zooming \& Shrinking Digital Images

Image shrinking is done in a similar manner as just described for zooming. For example, to shrink an image by half, we delete every other row and column.

Bilinear interpolation can be used to estimate the pixels of the reduced image from the neighboring pixels of the original image.

To reduce possible aliasing effect it is suggested to blur an image slightly before shrinking it.

4.5. Zooming \& Shrinking Digital Images

Forward Warping Versus Backward Warping

$$
\begin{aligned}
& x^{\prime}=r(x, y) \quad x=r^{-1}\left(x^{\prime}, y^{\prime}\right) \\
& y^{\prime}=s(x, y) \quad y=s^{-1}\left(x^{\prime}, y^{\prime}\right) \\
& \left\{\begin{array} { l }
{ x ^ { \prime } = 2 x } \\
{ y ^ { \prime } = 2 y }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\frac{x^{\prime}}{2} \\
y=\frac{y^{\prime}}{2}
\end{array}\right.\right.
\end{aligned}
$$

4.5. Zooming \& Shrinking Digital Images

Forward Warping Versus Backward Warping

4.5. Zooming \& Shrinking Digital Images

Top row using Nearest neighbor interpolation

$\begin{array}{lll}\text { a } & \text { b } & c \\ d\end{array}$
d e f
FIGURE 2.25 Top row: images zoomed from $128 \times 128,64 \times 64$, and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Project1

تبديل هندسي با جايغزيني بيكسل و تبديل دوخطيالف) تصويرى به اندازه 1024 1024 پيكسل را متشكىل از
 ب) توسط تبديل هندسى مناسب، تصوير را بر روى 120 درجه از يكـ سطح اسنو انهاى به شـعاع 489 قرار دهيد
ج) تصوير (a-35-3) كه داراى ابعاد 500*500 پيكسل است را به سايز 1024*1024 پيكسل تبديل كرده, قسمت (ب) را بر اين تصوير انجام دهيد. تبديلات هندسى فوق به دو روش جايكزينى بيكسل و درونيابى دوخطى انجام شود.

5. Some Basic Relationship Between Pixels

If pixel p at location (x, y) then its neighbors are:

- 4-neighbors $N_{4}(p)$

$$
\begin{gathered}
(x-1, y),(x+1, y),(x, y-1),(x, y+1) \\
\because \because \circ
\end{gathered}
$$

- 4-diagonal neighbors $N_{D}(p)$

$$
(x-1, y-1),(x-1, y+1),(x+1, y+1),(x+1, y-1)
$$

$$
\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

- 8-neighbors $N_{8}(p)$ All pixels in $N_{4}(p)$ and in $N_{D}(p)$

5. Adjacency, Connectivity, Region and Boundary

- Two pixels are connected if they are neighbors and if their gray levels satisfy a specified criterion of similarity.

$$
\begin{array}{llll}
& 165 & 104 & 101 \\
145<\mathrm{V} \leq 170 & 110 & 150 & 165 \\
& 102 & 155 & 170
\end{array}
$$

- Two pixels p and q are adjacent if they are connected.

5.1. Adjacency

Three type of adjacency:
(a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the set $N_{4}(p)$.

(b) 8 -adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the set $N_{8}(p)$.
(c) m-adjacency (mixed adjacency). Two pixels p and q with values from V are m-adjacent if
(i) q is in $N_{4}(p)$, or
(ii) q is in $N_{D}(p)$ and the set $N_{4}(p) \cap N_{4}(q)$ has no pixels whose values are from V

5.1. Adjacency

5.1.1. Region Adjacency

- Two image subsets S_{1} and S_{2} are adjacent if some pixel in S_{1} is adjacent to some pixel in S_{2}.

$$
V=\{1\}
$$

```
00000100000
01110111110
01101111100
01110111100
00000100000
    S
    S
```


5.1.2. Digital Path (or Curve)

A path from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates

$$
\left(x_{01}, y_{0}\right),\left(x_{11}, y_{1}\right), \ldots .,\left(x_{n}, y_{n}\right)
$$

where $\left(x_{0}, y_{0}\right)=(x, y)$ and $\left(x_{n}, y_{n}\right)=(s, t)$, and pixel $\left(x_{i j} y_{n}\right)$ and $\left(x_{i-1}, y_{n-1}\right)$ are adjacent

$$
\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

00000011100
01110100010
01001001100
01100010000
00011100000
Closed Path $(\mathrm{x}, \mathrm{y})=(\mathrm{s}$,

5.1.2. Digital Path (or Curve)

00000011100
00110100010
00100011100
00100010000
0001110000
$(2,4),(2,3),(3,3),(4,3),(5,4),(5,5),(5,6),(4,7),(3,7),(2,6)$

5.1.3. Connected Set

Let S be a subset of pixels in an image. Pixels p and q are connected in S if there exists a path between them consisting entirely of pixels in S. For any pixel p in S, the set of pixels that are connected to it in S is called a connected component of S. If set S has one connected component, then set S is called a connected set.

```
00000011100
01110100010
11000011100
111011100000
00011100000
    Not connected
```

```
00000011100
```

00000011100
01111111010
01111111010
11111111100
11111111100
11111111000
11111111000
00011100000
00011100000
Connected set

```
    Connected set
```


5.1.4. Region and Boundary

Let R be a subset of pixels in an image.
R is a region of the image if R is a connected set.
The boundary (border or contour) of a region R is the set of pixels in the region that have one or more neighbors that are not in R.

00011111000	00011111000
11110011110	11110011110
11110001100	11110001100
11111011000	11111011000
00001100000	00001100000

Edges are intensity discontinuities and boundaries are closed baths.

5.2. Dístance Measure (Euclidean)

For pixels p, q, and z, with coordinates $(x, y),(s, t)$, and ($v, w)$, respectively, D is a distance function or metric if
(a) $D(p, q) \geq 0$,
(b) $D(p, q)=D(q, p)$,
(c) $D(p, z) \leq D(p, q)+D(q, z)$
(symmetry)
(triangular inequality)
Euclidean distance between p and q is

$$
D_{e}(p, q)=\left[(x-s)^{2}+(y-t)^{2}\right]^{1 / 2}
$$

For this distance measure, the pixels having a distance less than or equal to some value r from (x, y) are the points contained in a disk of radius r centered at (x, y).

5.2. Distance Measure (City block, Chessboard)

The D_{4} distance (city-block) between p and q is 2 $D_{4}(p, q)=|x-s|+|y-t|$

Diamond shape
The D_{8} distance (chessboard) between p and q is

$$
D_{8}(p, q)=\max (|x-s|,|y-t|)
$$

5.2. Distance Measure of Path

If distance depend on the path between two pixels such as m-adjacency then the D_{m} distance between two pixels is defined as the shortest m-path between the pixels.

0	0	$1 \leftarrow q$	0	0	1	0	1	1
0	0	1	1	0	1	1	0	
$p \rightarrow 1$	0	0	1	0	0	1	0	0
$D_{m}(p, q)=2$	$D_{m}(p, q)=3$	$D_{m}(p, q)=4$						

Path Length

Find the shortest 4-, 8-, m-path between p and q for $V=\{0,1\}$ and $V=\{1,2\}$

3	1	2	1
2	2	0	2
1	2	1	1
1	0	1	2
(p)			

5.3. Image Operation on a Pixel Basis

Images are represented by Matrices, and matrix division is not defined. The following image division

$$
\boldsymbol{C}=\boldsymbol{A} / \boldsymbol{B}
$$

means that the division is carried out between corresponding pixels in the two images \boldsymbol{A} and \boldsymbol{B} to form image \boldsymbol{C}.

5.3. Linear and Nonlinear Operation

$$
H(a f+b g)=a H(f)+b H(g)
$$

Is the operator that compute the absolute value of the difference of two images linear?

Digital Image Processing

TOPIC - Elements of Visual Perception and Image Formation

 By:Dr. NAVEEN B ASSOC PROF DEPT OF ECE BGSIT

Roadmap

* Introduction
* Structure of human eye
* Brightness adaptation and Discrimination
* Image formation in human eye and Image formation model
* Basics of exposure
* Resolution
- Sampling and quantization
* Research issues

Questions

* Brightness adaptation
- Dynamic range
* Weber ratio
* Cones vs. rods
- Hexagonal sampling
- Fovea or blind spot
* Flexible lens and ciliary body
- Near sighted vs. far sighted
* Image resolution
- Sampling vs. quantization

Structure of the human eye

* The cornea and sclera outer cover
* The choroid
- Ciliary body
- Iris diaphragm
- Lens
* The retina
- Cones vision (photopic/bright-light vision): centered at fovea, highly sensitive to color
- Rods (scotopic/dim-light vision): general view
- Blind spot

Cones vs. Rods

Hexagonal pixel

Cone distribution on the fovea $(200,000$ cones $/ \mathrm{mm}^{2}$)

- Models human visual system more precisely
-The distance between a given pixel and its immediate neighbors is the same -Hexagonal sampling requires 13% fewer samples than rectangular sampling -ANN can be trained with less errors

The cone mosaic of fish retina
Berch

Lythgoe, Ecology of Vision (1979)

Human retina mosaic
-Irregularity reduces visual acuity for high-frequency signals -Introduce random noise

The mosaic array of most vertebrates is regular

Brightness adaptation

* Dynamic range of human visual system
- $10^{-6} \sim 10^{4}$
* Cannot accomplish this range simultaneously
* The current sensitivity level of the visual system is called the brightness adaptation level

Brightness discrimination

* Weber ratio (the experiment) $\Delta \mathrm{I}_{\mathrm{c}} / \mathrm{I}$
- I: the background illumination
$\square \Delta I_{c}$: the increment of illumination
- Small Weber ratio indicates good discrimination
- Larger Weber ratio indicates poor discrimination

Psychovisual effects

* The perceived brightness is not a simple function of intensity
- Mach band pattern
- Simultaneous contrast
- And more... (see link)

Distance from left edge
\square

Image formation in the eye

*Flexible lens
*Controlled by the tension in the fibers of the ciliary body

- To focus on distant objects?
- To focus on objects near eye?
- Near-sighted and far-sighted

Image formation in the eye

radiant energy

electrical impulses

Brain

FIGURE 2.3
Graphical
representation of the eye looking at a palm tree. Point C is the optical center of the lens.

A simple image formation model

* $f(x, y)$: the intensity is called the gray level for monochrome image
* $f(x, y)=i(x, y) . r(x, y)$
$-0<i(x, y)<$ inf, the illumination $\left(\mathrm{lm} / \mathrm{m}^{2}\right)$
$-0<r(x, y)<1$, the reflectance
* Some illumination figures $\left(\mathrm{lm} / \mathrm{m}^{2}\right)$
- 90,000: full sun
- 10,000: cloudy day
- 0.01: black velvet
- 0.1: full moon
- 1,000: commercial office

Camera exposure

*ISO number

- Sensitivity of the film or the sensor
- Can go as high as 1,600 and 3,200
* Shutter speed
- How fast the shutter is opened and closed
* f/stop
- The size of aperture
- 1.0 ~ 32

Sampling and Quantization

a b
FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

Uniform sampling

* Digitized in spatial domain $\left(\mathrm{I}_{\mathrm{M} \times \mathrm{N}}\right)$
* M and N are usually integer powers of two
* Nyquist theorem and Aliasing

$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$					
$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$					
$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$					
$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$\xrightarrow{\text { by 2 }}$	$(0,0)$	$(0,0)$	$(0,2)$	$(0,2)$
:---	:---	:---	:---					
$(0,0)$	$(0,0)$	$(0,2)$	$(0,2)$					
$(2,0)$	$(2,0)$	$(2,2)$	$(2,2)$					
$(2,0)$	$(2,0)$	$(2,2)$	$(2,2)$					

* Non-uniform sampling
- communication

More on aliasing

* Aliasing (the Moire effect)

http://www.wfu.edu/~matthews/misc/DigPhotog/alias/

original

Sampled by 2

Sampled by 4

Sampled by 16
Sampled by 8

Uniform quantization

* Digitized in amplitude (or pixel value)

 *PGM - 256 levels $\rightarrow 4$ levels

Image resolution

* Spatial resolution
- Line pairs per unit distance
- Dots/pixels per unit distance
- dots per inch - dpi
* Intensity resolution
- Smallest discernible change in intensity level
* The more samples in a fixed range, the higher the resolution
* The more bits, the higher the resolution

The research

* Artificial retina (refer to the link)
* Artificial vision (refer to the link)

Retinal Prosthesis Project
Johns Hopkins University
North Carolina State University

* 3-D interpretation of line drawing
* Compress sensing

3D interpretation of line

drawing

* Emulation approach

- A given 3-D interpretation is considered less likely to be correct if some angles between the wires are much larger than others

Research publications

* Conferences (IEEE)
- International Conference on Image Processing (ICIP)
- International Conference on Computer Vision (ICCV)
- International Conference on Computer Vision and Pattern Recognition (CVPR)
* Journals (IEEE)
- Transactions on Image Processing (TIP)
- Transactions on Medical Imaging (TMI)
- Transactions on Pattern Analysis and Machine Intelligence (PAMI)
* IEEE Explore
* Structure of human eye
- Photo-receptors on retina (cones vs. rods)
* Brightness adaptation
* Brightness discrimination (Weber ratio)
* Be aware of psychovisual effects
* Image formation models
* Digital imaging
- Sampling vs. quantization
- Image resolution

